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SUMMARY 

An application of multidomain decomposition to the computation of the steady free surface flow past a ship hull is 
presented. Viscous effects are taken into account in the neighbourhood of solid walls and in the wake by the 
Reynolds averaged Navier-Stokes equations, whereas the assumption of irrotationality in the external flow allows 
a description by a potential model. Free surface boundary conditions have been implemented in a linearized form 
at the undisturbed waterplane. Suitable matching conditions are enforced at the interface between the viscous and 
the potential regions. The numerical results obtained for two merchant ship forms (the HSVA tanker and the Series 
60 hull) are compared with experimental data available in the literature. 
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1. INTRODUCTION 

The main features of the flow around a ship hull are the existence of a fully three dimensional turbulent 
boundary layer over most of the hull, the possible generation of longitudinal vortex pairs at the bow 
and at the bilge, the presence of a complicated free surface wave pattern and its interaction with the 
boundary layer and the wake. The numerical simulation of this flow field is a challenging practical 
application for CFD but a difficult problem to deal with, because of the extremely large Reynolds 
numbers ( -  lo8-lo9) at which actual ships operate, and because of the moving boundary at the air- 
water interface. The solution of the Navier-Stokes equations generally requires such a large amount of 
CPU time that numerical codes based on these equations become unfeasible for a customary usage in 
ship design. To overcome these difficulties, the decomposition suggested by Froude’ has generally 
been used: gravity and viscosity are supposed to act separately and the mutual interaction of these 
effects is neglected. Potential flow models are used for the computation of the wave resistance R, and 
the wave pattern, while viscous equations are solved ignoring the effects of waves, that is assuming a 
fixed (undisturbed) free surface regarded as a slip plane. Although the Froude decomposition allows a 
satisfactory prediction of both wave and viscous drag for slender hulls, mutual interaction of gravity 
and viscous forces may be important in the prediction of the hydrodynamic performances of full-form 
hulls, transom stem ships and twin-hull vessels. It is therefore a major problem in numerical prediction 
methods to take into account this influence. 

The zonal approach concepts can be fruitfully exploited to save CPU time in the computation of the 
complete ship problem. Viscous effects may be considered only near the solid walls and in the wake, 
while the external flow field may be assumed to be inviscid. From the historical point of view, 
boundary layer methods were the first ones used to make the computation easier. These approaches 
were widely applied in aeronautical engineering from the late 1960s (for a general review see, for 
example, References 2 and 3), while their application to a simple naval problem (double-model flow, 
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i.e. the flow past the ship and its image with respect to the undisturbed water plane) is more 
and even more recent is the application to free surface viscous flows.6 In classical boundary layer 
models, the viscous layer is assumed to be thin with respect to the local radius of curvature of the body 
surface. The equations of these models are parabolic: the influence of the downstream flow is neglected 
and the pressure is assumed to be constant through the boundary layer and equal to the external 
pressure. In the absence of separation, inviscid and boundary layer flow theories are usually applied 
with a coupled procedure (direct method) to take into account displacement effects. In the presence of 
separation, direct boundary layer methods cannot be used; an initial guess for the displacement 
thickness is assumed in the flow reversal zone, and it is iteratively adjusted to match the external 
pressure (inverse methods'). 

The application of these methods to three dimensional ship flows may have a limited success when 
the thick boundary layer and the wake show a fully 3D nature, with large crossflow and strong 
longitudinal vortices, especially near the bow and the stem, where the curvature of the hull surface is 
large. Moreover this kind of approaches may give rise to some difficulties when dealing with full-form 
hulls and transom stems or for ships advancing in drift motion. In all these cases the definition of the 
displacement thickness is not easy, especially when boundary layer separation occurs. 

A method that describes the flow near the hull by the Navier-Stokes equations can be found in 
Reference 8, where the displacement thickness idea is retained only to define the boundary of the 
potential flow domain. With this approach, all the limits implied in the boundary layer model are 
overcome and, in fact, very good results can be found in the cited paper. Nevertheless, the difficulties 
regarding the definition of the displacement thickness in the cases mentioned above still remain. 
Moreover the regridding of the boundary of the potential flow field and the computation of the 
influence coefficient required at each iteration can be CPU time consuming. 

The present method is not based on the concept of displacement thickness, but it assumes a fixed 
decomposition of the fluid domain, with a matching surface, on which appropriate conditions are 
imposed, located a priori. A panel method is used for the solution of the potential free surface flow, 
whereas the Reynolds averaged Navier-Stokes equations are discretized by a finite volume 
technique. The linearized model of Dawson' has been used in the external flow, where the double 
model flow is chosen as basis flow for the linearization of the free surface boundary conditions. In 
the internal region these conditions are linearized in the sense that they are imposed on the 
undisturbed water plane, while the nonlinear relation between pressure and velocity is retained. The 
choice of a linear potential model is dictated by the need of CPU time saving; at the same time, the 
Dawson model was preferred among the others because it allows a satisfactory prediction of the free 
surface pattern." 

The matching conditions to be used with linearized free surface flows deserve particular attention. In 
fact, the splitting of the external flow in a double model flow plus a perturbation term must, be taken 
into account when forcing the matching conditions: the double model potential has to match the 
viscous double model flow, while the perturbation potential must be related to the difference between 
the free surface and the double model viscous flow. Therefore, a double model iterative computation is 
initially required to define the basis flow, then the free surface flow can be computed for each Froude 
number. 

The present work can be seen as a sequel of References 11-13, where the authors started the 
analysis of domain decomposition techniques for free surface flows. In the previous work the global 
domain was divided into two non-overlapping zones; we have now analysed a domain decomposition 
with overlapping that seems to show better convergence properties in the iterative algorithm and a 
more regular transition of the solution from the inner to the outer domain at the matching boundaries. 

In the following sections, the viscous and inviscid solvers are described and the coupling procedure 
is analysed. Some numerical examples are discussed and compared with experimental data. 
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Figure 1 , Computational sub-domains and overlapping zone 

2. MATHEMATICAL MODEL 

In the following, we consider the steady flow past a ship hull 99 floating in an incompressible viscous 
fluid. The flow domain is bounded by the free surface 9, by the hull surface and extends to infinity. 
We assume a body-fixed reference frame with the x-axis aligned with the ship and oriented from the 
bow to the stern; the z-axis is positive upwards (Figure 1). 

The fluid is assumed inviscid and the flow irrotational in the subdomain gP of the flow domain 9 
that lies outside the surface r,, whereas viscosity effects are taken into account in the inner region 9" 
bounded by Tv and the hull surface (see Figure 1). The two subdomains intersect over the region 
between rp and r,. 

The variables have been non-dimensionalized by the ship length L and the free stream velocity U. 
Two parameters characterize the flow: the Froude number Fr = U/(gL)f and the Reynolds number 
Re = ULp/c(, where p is the fluid density, g the acceleration of gravity and c( the dynamic viscosity. 

2.1. The outer region 

The fluid velocity u = (u, v, w) can be written as the gradient of a scalar function 0: 

u(x, y ,  z> = V@(X, y ,  4. 
The potential 0 is harmonic in gP. The boundary conditions to be enforced are: 

(i) Neumann boundary conditions on rp, i.e. 

where ,W,, is the matching condition to be specified later on. 

therefore constant. From the Bernoulli theorem we have the dynamic condition: 
(ii) At the free surface 9: z = %(x, y )  the pressure must be equal to the atmospheric pressure and 

(3) 
F? 

w x , y ,  1 = -+' - IV@,[X,Y, = W x , y ,  )1I2L 

where surface tension has been neglected. The tangency of the flow to the unknown free 
surface gives the kinematic boundary condition 
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For computational purposes, the potential CD is split into the double model term cp and the perturbation 
term Cp: 

@(x, y ,  z> = q ( x ,  Y ?  z )  + @(& Y ,  4- ( 5 )  

The double model potential cp is used as basis flow for the linearization. It describes the flow past the 
body B and its image B’, symmetric with respect to the (x, y)-plane (i.e. cp,(x, y, 0) = 0). The double 
model potential satisfies the matching condition 

The perturbation term describes the departure of the flow from the double model solution. It satisfies 

acp - 
-= Y n  onr,, 
an 

where 9, is such that 

(7 )  

“Y-, will be specified with W,, in Section 5. Then, the free surface boundary conditions are linearized 
following Dawson’: the squares of the derivatives of (p are neglected and the kinematic and dynamic 
boundary conditions are merged to yield the unified boundary condition 

where all terms in cp are known from the double model solution, and I is the curvilinear abscissa 
defined along the double model streamlines on z = 0. 

Finally, the asymptotic behaviour of the wave potential @(x, y, z) at infinity must be specified. 
Waves should never propagate upstream; this gives the radiation condition: 

Iim l v ~ p ( x , y ,  z ) /  = o (10) 
X’-W 

for every fixed 01, z) in BP. 

2.2. The inner region 

The Reynolds averaged Navier-Stokes equations describe the flow in the inner region 9”. The 
velocity field is divergence free 

V . u = O  i n g V  (1 1) 

and the momentum equation has to be satisfied 

u . Vu + V P  = V .  T in gV. 

In the previous equation P is the ‘total’ pressure, i.e. the sum of the pressure term and the gravity term 

VP k VPz- -+-=V - + - ,  
p Fr2 [“p ;2] 

k being the unit vector aligned with the z-axis. T is the stress tensor, including the turbulent stresses 
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vT being the kinematic eddy viscosity. In the present work the Baldwin-Lomax turbulence modelI4 has 
been used. 

Apart from the surface r, at which the potential and the viscous solutions are matched (this topic 
will be discussed later on), the boundary conditions to be imposed are the standard ones for Navier- 
Stokes computations. At the solid wall no slip conditions are enforced, i.e. velocity is set to zero at the 
boundary (no conditions are required for the pressure). On the free surface, the boundary conditions to 
be satisfied are the following: 

(a )  the kinematic boundary condition 

ax ax 
ax ay 

u - + v- = w ;  

(6) the dynamic boundary condition (constant pressure on 9,) 

P = %jFr2; 

(c) zero tangential stresses 

7, = 0, zyz = 0. 

3. NUMERICAL MODEL 

In the numerical solution of the mathematical model depicted in Section 2 we can exploit the 
symmetry of the problem about the (x, z)-plane (the study is limited to ships advancing in rectilinear 
motion with no drift), and therefore only half of both subdomains is discretized. Symmetry conditions 
are imposed at y = 0 for the viscous flow 

= 0, v = 0, = 0, (18) tly=, ly=o aY y = o  
?I 1 0 ,  
aY y = o  

while the method of images is used to reduce the number of unknoms in the potential problem. 

3. I .  Potential solver 

The solution of the mathematical model described in Section 2.1 can be obtained by a panel method. 
In the following, r, and 9, are the discretized portions of the boundaries r, and 9, fespectively. The 
double model term cp can be represented by a simple layer potential distributed on r, 

r 

where P = (x, Y, Z> E gp, Q = (XQ,  YQ,  ZQ) E r p ,  Q' = ( X Q ,  YQ, -zQ>. 
If (19) is introduced in (6) we obtain the integral equation to be solved numerically. To this end, the 

boundary f', of 9, is discretized into Nr plane quadrilateral elements L k ,  k = 1, . . . , Nr, and the 
simple layer intensity o(Q) is assumed piecewise constant. The discrete form of the integral equation 
(6) for o(Q) reads 
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for i = N s  + 1, . . . , N,  Equation (20) can be rewritten in the following form: 
N 

1 
k # ,  

ffk[n(Pi) (vk(pj) + v;(pj))] - 2 R g i  = vn(Pi)v 
k = N s + I  

The resulting system of N r  linear equations in the N r  unknowns f f k  is solved with the LU factorization. 
Similarly, the perturbation term (p can be represented by a simple layer potential on rP and the part 

p p  of the free surface included in the boundary of gP: 

where Q = (xe, yQ, zQ) E rp U 3p. As for the double model problem, (24) is introduced in (7) and (9) 
to obtain the integral equations to be solved numerically. We discretize U 9p into N = Ns + N r  
plane quadrilateral elements L k ,  k = 1, . . . , N.  N r  denotes the number of panels located on r, and NS 
the number of those located on the average free surface 9,. The discrete forms of equation (7) is 

N c ak[n(P, )  . vk(Pi)]  - 2x5, = +,(P,) (i = N~ + 1, . . . , N ) ,  (25) 
k = I  
k # l  

while, for equation (9), 

k = I  k = I  

1 
= -[Cp/(Pj)]2Cp,,(Pj) (i = 1,  . . . , Ns) ,  

where 1(PJ is the unit vector tangent to the double model streamlines on ;=O, and 

The derivatives of V A P )  are approximated with second-order upwind finite differences along the co- 
ordinate lines. The upwind bias on each co-ordinate direction is determined by the corresponding 
double model velocity component. The radiation condition (10) is enforced in the following discrete 
form: 

where j = 1, . . . , Nj is the index set corresponding to all panels whose control points Pi = (xj, yj, 0) are 
such that xi < x,  (see Figure 2), where x = x ,  is a plane that lies halfway the beginning of the potential 
domain and the bow of the ship. These equations replace the N/ equations (26) corresponding to the 
control points Pj 
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x 
+ pz=s a t  2 

Figure 2. Control points where the radiation condition is enforced 

The linear system (25)-(27) of N equations in the N unknowns (Pk is solved as in the double model 

The reader is referred to Reference 15 for a rigorous and extensive discussion of the topics 
problem, by LU factorization. 

illustrated in this section. 

3.2. Navier-Stokes solver 

A well established implicit scheme developed in Reference 16 has been used for the numerical 
solution of the problem described in Section 2.2. 

A pseudo-transient formulation due to Chorin" is used to solve the steady state incompressible 
Reynolds averaged Navier-Stokes equations. In this scheme the continuity equation is replaced by a 
transient counterpart 

(28) 2 + pv . " = 0, 
at 

where /? is the pseudo-compressibility factor. The resulting system of conservation laws is 

aq aFI aF2 a~~ as aFi -+-+-+-=-+-=o 
at ax ay az at axi ' 

where 
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If (5, q, 52,  53) is a curvilinear coordinate system, and we set (x, y, z)-(xl, x2, x3), 
equation (29) can be recast in the form 

l a  
at J atk as + - -[J<k,;F'] = 0, 

where the summation convention on repeated indices is adopted from here on for sake of conciseness, 
J is the Jacobian and (.); = a(.)/ax;. 

A finite volume technique is used to discretize equation (31). The inner region 9,, is divided in 
hexahedra K,k. The application of the Gauss theorem in the control volume K,k yields 

with 

where s i jk  is the boundary of K,k, n = (nx ,  ny, n,) is the outer normal to Svk and 9 1 (F', F2, F3). In 
the numerical approximation the values of F on the faces of the cell K,k are needed for the 
discretization of equation (32): a simple averaging of neighbouring points is used to obtain velocity 
and pressure, while the stress tensor is evaluated by centred differencing. 

The time marching procedure follows Beam and Warming18 
q n + l  - n n + l  

9 = ( 1  - 8 ) 2 / " + 0 2 1  = -(1 - 8)R(qn) - BR(q"+') 
At 

where 0 < 8 d 1. Using a Taylor expansion, equation (34) can be written in 'delta' form 

J51,,Arn6q + J5,,rnBm*r - "')In= -AtR(qn), 
at, 

where 6" = q"+' -q", A" and B",' are the jacobians of F": 

(34) 

(35) 

A direct solution of the system of algebraic equations (35) would be too expensive, thus an 
approximate factorization technique is used to reduce it to the solution of three simpler problems, with 
block tridiagonal coefficient matrix: 

[I + @At(&' + d2 + d3)]6qn 2 (I + 8At,d1)(I + 8Atd2)(I + 8Atd3)6q", (37) 
with accuracy O(At). The operator .d introduced in the factorization is defined as 

with no summation on 1. It can be noticed that all the second-order mixed derivative in 6q were 
discarded in the implicit part of the system to maintain the tridiagonal structure. This approximation, 
however, does not affect the steady state solution. 

To ensure the numeric.al stability of the scheme, a fourth order artificial dissipation term is added to 
both sides of (37). Thus the flux at the interface li+t,j,k is modified according to 

- 
*F ' "l;+i , j ,k  = 9 ' nl i+$ , j ,k  +&eV(q;+2.j,k - 3qi+l,j.k + 3qij,k - qi-l,j,k)T (39) 
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E, being a parameter O(1) and v the average volume of the two neighbouring cells. A second-order 
term is added to each tridiagonal operator in the left-hand side 

where E~ is again O(1). 
The final form of the system of equations is, then 

(I + 8 A t 2 ' ) ( I  + 8 A t 2 * ) ( 1  + 8At2')6qfl = -AtR(q"), (41) 

where R(q") includes the artificial dissipation terms. 
It can be shown that the steady state solution is second-order accurate and that the above scheme is 

unconditionally stable in the linear case if 8 > 0.5 and ci 2 2~, .  The reader is referred to References 16 
and 18 for a detailed discussion. 

In the implementation of the numerical code, all the metric terms in the above relations were 
computed in a finite volume fashion, i.e. the Jacobian Juk was set equal to the volume cell K,k and the 
terms like J t i  at the cell interfaces 5 = const. are computed, for instance, as 

where (nx, ny, n,) is the outer normal to the interface and AS1+gJ,k is the area of the interface between 
K , , , k  and K,,,,,,. A speedup in the computation can be achieved if a local time step is used 

Atvk = CJjk (43) 

with C a stability parameter. 
The boundary conditions are enforced as follows: 
Solid wall. At the cell interface of the hull surface u is set to zero. The normal gradient of the 

velocity, needed for the computation of the stress at the boundary, is computed with a first-order one- 
side difference, while the pressure is simply extrapolated from the cell centre adjacent to the wall. 

Symmetry plane. The normal velocity, the normal gradient of the other velocity components and the 
normal gradient of the pressure are set to zero. 

Outjlow. The flow is supposed to be completely developed in this region and therefore both the 
pressure and the velocity vector are extrapolated (null gradient) from internal values. 

Free surface. The wave elevation x is updated at each iteration by means of the unsteady kinematic 
boundary condition 

(44) 
ax ax a x  
at ax ay 

~ + u - + v- = w, 

which is discretized with a finite difference scheme 

The spatial derivatives of X in (45) are computed with second order upwind differences. 
Once 2 is known, the total pressure at the free surface is computed from (16). The velocity 

components are simply extrapolated from the values at the cell centre below the waterplane. Condition 
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Potential Flow 

Figure 3. Location of the exchanged variables at the matching interfaces 

(17) has not been used, because the dimension of the cells near the free surface does not allow the 
resolution of the boundary layer at the water-air interface, which is extremely thin, being O(Fr/Ref). 

Applications of this scheme to double model ship flow calculations can be found, for instance, in 
Reference 19 or 20. 

4. MATCHWG ALGORITHM 

The numerical algorithm used to couple the inner and the outer solution is the most important step of 
the whole procedure. The choice of the exchanged variables and the location of the matching surface 
may deeply affect the convergence rate or even cause the failure of the algorithm. In the previous 
version of the method", a non-overlapping domain decomposition scheme was used. The values of the 
tangential component of the velocity and the pressure of the potential field at the matching surface 
were used as boundary conditions for the Navier-Stokes solver, while the normal component of the 
viscous solution was used as Neumann condition in the potential flow. With this kind of approach, the 
convergence was reached within round-off errors but the convergence rate was not very satisfactory 
and some relaxation factors had to be used when matching the solutions. Furthermore, non-smooth 
transition from the inner to the outer domain was observed. 

In the present work, the algorithm has been changed. The flow domain is divided in two subdomains 
that overlap in a small region, as illustrated in Figures 1 and 3. These subdomains are bounded by r, 
and Tv, which are the boundaries of the potential and viscous zones, respectively. The thickness of the 
overlapping region is equal to half the height of the outermost cells in the inner grid (Figure 3). 

In the iterative coupling procedure, the solution computed in the first domain is used to feed the 
solution in the other domain with the boundary conditions, that is, in terms of the total potential @: 

(i) from the potential solver we get the velocity vector at the grid point B on r, (see Figure 3); 
these values are enforced as boundary conditions on the viscous flow 

uli-,, = V@lru; (46) 

(ii) the normal component of the velocity at the control point A on r, (see Figure 3) is computed 
from the viscous flow solution. This value is then used as a Neumann condition for the 
potential problem (see equation (2)) 
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This new scheme improves the convergence rate, makes the relaxation factors useless and ensures a 
smooth transition across the matching surface. 

As to the numerical implementation of matching conditions, we remind that for computational 
reasons the potential flow field is expressed as the sum of a double model potential cp and a 
perturbation potential ij. The multidomain solution has to be consistent with this decomposition, and 
therefore the solution must be obtained in two steps: 

I .  Double Model Flow. The solution is computed with the conditions 

wo = 0. 

on the waterplane z=O, while the matching conditions on r, and r, are 

where uo is the velocity vector in the inner double model solution. 
A uniform flow is assumed as initial condition. 
2. Free Surface Flow. Once the double model solution is obtained with the desired accuracy, the 

free surface flow can be computed. The matching conditions to be enforced are slightly more complex 
than in the previous step. In fact, the potential @ is a perturbation with respect to the double model flow 
and therefore it must be related to the difference between the free surface velocity field and the double 
model velocity field in the viscous domain. At the same time, the viscous solution, which is not split, 
must be related to the total potential. This yields the following matching conditions: 

The double model flow is chosen as initial guess, and therefore the onset matching condition (52) is 

It is easy to verify that if (50) and (52) are summed, the global matching condition (47) is satisfied. 
It is to be noticed that, in the practical implementation of the matching algorithm, we need to 

evaluate the pressure on r,. From the theoretical point of view, it is well known that the solution of the 
Navier-Stokes equations is completely determined by the boundary conditions (49) and (5 1) on r, for 
the double model problem and for the free surface problem respectively. This means that no boundary 
condition must be enforced on the pressure field in the viscous subdomain at the matching boundary. 
On the other hand, its value is required for the computation of the fluxes normal to the cell interfaces 
on r, and therefore it must be evaluated somehow. Numerical tests proved that first or second order 
extrapolations of the pressure from the inner of the domain 9, give rise to discontinuities and 

a@lan = 0. 
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oscillations of the solution at the matching boundary. Conversely, the evaluation of the pressure from 
the external field by means of the Bernoulli’s theorem yield a smooth matching in the overlapping 
region. We stress that this is not to be regarded as a boundary condition; on the contrary, it is an 
estimate of the pressure, supported by the assumption of negligible viscous effects on I?,. 

The standard application of a multidomain decomposition technique would require the iterative 
coupling of the converged flow fields, each computed for assigned boundary conditions on the 
matching surfaces, as done in Reference 2 .  

The solution of the potential field for both the double model and the free surface problem is not very 
expensive to be computed, in that the problems are linear and therefore the coefficient matrix of the 
resulting system of equations can be computed and stored in factorized form at the beginning of the 
computation. In fact, the coupling procedure affects only the right-hand side of the system of equations 
in the unknown cr or 6, and therefore the solution can be calculated by back-substitution at each global 
step. We insist that in the potential free surface problem the coefficient matrix depends only on the 
double model solution that has already been computed at the previous stage, and therefore does not 
change while iterating, because the two problems have been solved separately, unlike that in Reference 
21. 

On the contrary, the steady solution of the Navier-Stokes equations is extremely time consuming, 
because we have to deal with a system of coupled non-linear equations, that must be solved iteratively. 
However, the convergence of the viscous solver to the steady state solution in the inner cycle of the 
iterative matching algorithm is not required, like in most nested iteration algorithms. In all the test 
cases we have performed, the Navier-Stokes solver was iterated for a fixed number NNs of steps 
(typically 1 < NNs < 100) and the global algorithm never failed to converge. Nevertheless, the number 
of sub-iterations affects the global convergence rate. Some numerical experiments on this aspect will 
be shown in the next section. 

5. NUMERICAL RESULTS 

All the test cases presented in this section were computed with a workstation IBM RISC/6000 Mod. 
560 equipped with 256 Megabyte of RAM with peak performances equal to 80 MFLOPS. 

In numerical tests, three hull forms have been chosen. The Wigley hull was used in consistence tests. 
This hull, although of no practical interest, has often been used in both numerical and experimental test 
cases, because it has a simple analytical representation given by 

B 2  q 1  - ( 3 2 ] [ 1  - (3’1, ( 5 3 )  

where BIL=0.1 and dlL= 1/16. L ,  B and d are the length, the breadth and the draft of the hull 
respectively. Two merchant ship forms, for which model basin experimental data or wind tunnel 
measurements are available, have been considered for the validation of the algorithm. The first one is 
the HSVA tanker, the geometry of which is reported in Figure 4. For this hull very detailed 
experimental measurements, carried out in the wind tunnel at University of Hamburg,22 are available in 
terms of both pressure and velocity field for the double model flow. The second one is another typical 
test case hull, the Series 60 with C, = 0.6, where Cb is the block coefficient, defined as the ratio of the 
volume of water displaced by the ship to the product of the ship’s length, breadth and draft (Figure 5). 
Detailed experimental data, measured at the IIHR (University of Iowa), are available for this hull for 
several free surface flows, with Froude number equal to 0.160, 0.250, 0.300 and 0.316. 

The meshes used in the numerical tests are summarized in Table I, where N, x 4 x Nk in the inner 
domain means Ni cells in streamwise direction, A$ cells in normal direction and Nk cells in girthwise 
direction, while Nirp x Nkrp is the number of panels on I?p in streamwise and girthwise direction 
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Front View Side View 

Top View 

Figure 4. HSVA tanker: top view, side view and front view (afterbody cross sections on the left, forebody cross section on the 
right) 

Front View Side View 

Top View 

Figure 5.  Series 60 hull: top view, side view and front view (afterbody cross sections on the left, forebody cross section on the 
right) 

respectively. Finally, Nisp x Nksp is the number of panels on the waterplane in the potential subdomain 
pp, in streamwise and starboard direction, respectively, 

In Figure 6 the coarse C-0 grid used in the inner region for the computation of the double model 
flow past the HSVA tanker is shown. In this case we do not have the free surface grid. The 
computational mesh used for the Series 60 is shown in Figure 7, where the free surface C-type grid is 
shown together with the inner grid. 

In all the computation performed, the cells in the viscous subdomain were clustered near the wall in 
order to have a satisfactory resolution of the strong boundary layer gradients of the tangential 
components of velocity. The normal size of the first cell near the wall was lop5 in all the grids. 
Moreover, the cells were clustered near the bow and the stem, where significant gradients of both 
pressure and velocity are expected. The matching surface is L/20 far from the hull in both the HSVA 
tanker and the Series 60 in the fine grid computations, while it is placed at LAO in the coarse HSVA 
grid. 

Figure 6 .  Sample grid around the HSVA tanker 
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Figure 7. Sample grid used in the S60 computation. Dotted lines: free surface panel: solid lines: Navier-Stokes grid 

5. I .  Numerical behaviour of the algorithm 

investigated. 
Before the comparison with the experimental data, some properties of the algorithm have been 

5.1.1. Convergence properties. As an example of the consistency of matching conditions, we report 
the convergence history for the computation of the free surface flow past a Wigley hull advancing in 
calm water with Fr = 0.3 16 and Re = 4.5 x 1 06. 

The convergence history (L2 norm of the divergence residual against the number of iterations of the 
Navier-Stokes solver), reported in Figure 8 for both the double model problem (the first part of the plot 

l o  c 

i d J  1 
2000 1030 6000 BOO0 

Figure 8. Convergence history of Lz norm of the mass residual 
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Nns 

Figure 9. CPU times (in seconds) as function of the number of the Navier-Stokes iterations for each potential solver call 

up to 2000 iterations) and the free surface problem, shows that the discrete problem can be solved with 
any desired accuracy, up to roundoff errors. 

Next, the dependence of the convergence rate on the various parameter mentioned in the previous 
section is analysed. In Figure 9 the CPU time is reported as a function of NNs (see the end of Section 4) 
for the computation of a free surface viscous flow with Fr = 0.3 16 and Re = 4 x lo6 past the Series 60. 
The computation to which the picture refers was performed with the coarse grid mentioned in Table I. 
The CPU time reported in the figure (in seconds) is the time needed to low the initial L2 norm of the 
residual of the divergence by a factor In the analysis reported, NNs =40 is the optimum value. 
However, a more extensive analysis is required to have a more reliable answer. 

Figure 10 shows the CPU time (evaluated as in the previous case) as a function of the stability 
parameter C in (43). In this case, the CPU time reaches a minimum at C = 0.3, beyond which it begins 

10' iI  ' ' ' " ' I ) '  

10 10 ' 1 

Stab. Factor 

Figure 10. CPU time (in seconds) as function of the stability parameter 
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Table I 

coarse grid fine grid 
I . I 

inner domain outer domain inner domain outer domain 
r P  .4”P r P  Y P  

Wigley 65 x 15 x 15 65 x 15 65 x 15 - - - 

HSVA 65 x 14 x 14 65 x 14 120 x 30 x 30 120 x 30 
S60 80 x 10 x 14 80 x 14 80 x 10 120 x 15 x 24 120 x 24 120 x 15 

- - 

to grow again. At C = 0.5 the algorithm diverges. The previous comments on the reliability of this 
results still hold. 

5.1.2. Grid dependence. The dependence of the numerical solution on the grid size was 
investigated for both the double model flow past the HSVA tanker and the free surface flow at 
Fr = 0.3 16 for the Series 60. Figure 1 1 shows the comparison of the contour lines of the pressure on 
the hull, on the symmetry plane and on the water plane as computed with the coarse and fine grid for 
the flow past the HSVA tanker. The figure shows that the dependence of the numerical solution on the 
grid size is very weak. In Figure 12 the pressure contours obtained with the multidomain computation 
on the coarse grid and a full domain Navier-Stokes computation on a 80 x 30 x 24 grid are 
compared. The comparison of the performances of the two calculations is favourable to the 
multidomain algorithm and very encouraging: the required CPU times are 4 h with the zonal approach 
and 24 h in the full Navier-Stokes computation. 

The same investigation was carried out for the free surface viscous flow past the S60 hull. The 
contour lines of the pressure computed with the coarse and the fine grids are compared in Figure 13 in 
the case Fr=O.316 and Re=4  x lo6. Also in this case the agreement is rather satisfactory. 

Figure 1 I. Pressure contour map: comparison between fine grid solution (solid line) and coarse grid solution (dashed line) for the 
HSVA tanker. Levels: - 0.5, - 0-45, . . . , 0.5 
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Figure 12. Pressure contour map: comparison between present method (solid line) and full viscous solution (dashed line) for the 
HSVA tanker. Levels: - 0.5, - 0.45, . . . , 0.5 

5.1.3. Domain size dependence. The dependence of the numerical solution on the position on the 
surface rp (and consequently on the size of the viscous subdomain) is reported in Figure 14, where the 
wave elevations on the hull and in the wake, obtained with two different positions of the matching 
surface, are shown. The solid line is the wave profile computed with the fine grid. The broken line is 
the wave profile computed with a grid which is identical to the previous one in the innermost part, 
while the five outermost arrays of cells were eliminated, i.e. the second grid has 120 x 10 x 24 cells in 
the inner domain. The boundary of the potential field is discretized with the same number of panels as 
in the fine grid. In the computation with the fine grid, the matching surface is placed at 1/20 of the ship 
length aside from the hull, while in the second it is much closer to the ship (l/lOO). The two 
computation are in reasonable agreement, although in the second case the boundary of the viscous 
subdomain is very near to the region where viscous effects are important. 

Figure 13. Pressure contour map: comparison between fine grid solution (solid line) and coarse grid solution (dashed line) for the 
free surface flow past the S60 hull Fr=0.316, Re=4 x lo6. Levels: -0.12, -0.10, .. . , 0.12 
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Figure 14 Wave profile on the hull free surface flow past the S60 hull Fr = 0 3 16, Re = 4 x 1 O6 Companson between the 
solutions when the distance of r, from the body is equal to L/20 (solid line) and L/100 (dashed line) 

Figure 15. 

0.015 I I I I 

0.01 

0.005 

0 

-0.005 

-0.0 I 

-0.015 I I t I I 

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 

Wave profile on the hull: comparison of the solutions with E, = 8; 4; 2; 1; 0.5 for the free surface flow past the 
Fr=0.316, R e = 4  x lo6 

0.2 1 

S60 hull 

0' I I I 1 
I I 1 I 1 I 

0 0.002 0.004 0.006 0.008 0.01 

Figure 16. Boundary layer at midship on the waterplane: comparison of the solutions with E, = 8; 4; 2; 1; 0.5 for the free surface 
flow past the S60 hull Fr = 0.3 16, Re = 4 x 1 O6 
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Numerical Results 

a o x  -0.) 75 4.?75 -0.075 0025 

4275 ', , 
-OW5 -0.175 4075 

Experimental Data 

Figure 17. Pressure contour map: comparison between numerical results (top half) and experimental data22 (bottom halt) for the 
HSVA tanker. Levels: -0.5, -0.475, . . . , 0.5 

Note that in the computations reported in Figure 11, for the double model flow past the HSVA 
=LAO and L/20 far tanker, the size of the inner domain is different for the coarse and fine grid, with 

from the hull, respectively. The dependence on the domain size is moderate also for this test case. 

5.1.4. Artificial viscosity dependence. Finally, the dependence of the numerical solution on 
artificial viscosity parameter E, (see (39)) was investigated. Five values of this parameter 
(8, 4, 2, 1, 0.5) were tested. In all the computations E ~ = ~ E , .  As it can be observed in Figure 15 
and 16, the wave elevation is almost independent of the value of E ~ ,  while its influence on the velocity 
profiles in the boundary layer is more relevant. Figure 16 shows that the velocity profiles computed 
with te= 1 and E,= 0.5 are practically identical. However, E, cannot be Wher  reduced, because 
spurious oscillations appear and the algorithm may fail to converge. 

5.2. Comparisons with experiments 

5.2.1. Double modelflow past the HSVA tanker In this section, the numerical results are compared 
with wind tunnel measurements for the double model flow past the HSVA tanker.22 

In Figure 17 the computed pressure on the surface of the ship is compared with experimental data, 
showing a good agreement. The same cannot be said when comparing the velocity field near the stem 
(Figure 18). The computed solution fails to reproduce the main features of the axial velocity 
distribution in the wake; more in detail, the S-shaped contours observed experimentally are completely 
absent. This is a problem common to many numerical schemes, as it was noted in the Workshop held in 
Gothenburg in 1990.23 This aspect was studied in great detail by Visonneau et who analysed the 
dependence of the solution on the grid size and on the turbulence model. They proved that this 
incapability of numerical codes to feature this complex velocity field is mainly due to the turbulence 
models used in the simulation. However, the choice of a proper turbulence model is beyond the scope 
of the present study, and therefore the problem was no hrther analysed. 

5.2.2. Free surface flow past the S60 hull (Cb = 0.6). For the S60 hull, several non-zero Froude 
number computations have been performed. 

The wave patterns are shown in Figures 19 and 20 for Froude numbers equal to 0-300 and 0.316 
(Re=4.5 x lo6 in both cases). The computed solutions are compared with experimental 
 measurement^.^' The comparison with the experimental measured wave profiles is satisfactory, in 
that the numerical simulation can predict the formation and interference of the stem and bow wave 
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Y = 0.61, Y = 0.020 

Figure 18. Axial velocity contour map: comparison between numerical results (right) and experimental data” (let?) for the HSVA 
tanker at cross sections x = 0.645, 0.92, 0.988, 1.018; levels: 0.2, 0.3, . . . , 0.9 

systems observed experimentally. It is worth noticing the good matching of the inner and the outer 
solutions at the surface F,. 

The wave profiles along the hull are compared with experiments and with full potential calculations 
for four values of the Froude number (0.160, 0.250, 0.300 and 0.316). Figure 21 shows that the 
prediction obtained with the multidomain technique fits the experiments better than the potential 
calculation at all the Froude numbers tested. Particularly relevant is the capability of the present 
method to capture the position of local maxima and minima of the wave profile and the good 
prediction of the bow crests at very low Froude numbers. This last aspect is likely to be due not only to 

Figure 19. Free surface elevation: comparison between numerical results (top halt) and experimental data26 (bottom half) for the 
S6&Fr=0~300. Levels of X/F?: -0.1, -0.09, . . . , 0.1 
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Figure 20. Free surface elevation: comparison between numerical results (top halt) and experimental dataz6 (bottom half) for the 
S6&Fr== 0.316. Levels of XEPIF?: -0.1, -0.09, . . . , 0.1 

1 . 

-.4 -.2 .2 .4 
I 
.01 

-.2 .2 .4 -.4 

Figure 21. Free surface elevation along the hull: multidomain solution (solid line), potential solution (broken line) and 
experimental dataz6 (symbols) for the S60 Free surface flow with Fr=0.160, 0.250, 0.300, 0.316 
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p = o  0 
\ 

Figure 22. Pressure at the stem of the S60 hull at Fr = 0.16: comparison between numerical results (solid line) and experimental 
data26 (dashed line). Levels: -0.06, -0.05, . . . , 0.1 

viscous effects, but also to the fact that the boundary condition at the free surface in the viscous 
domain retains some of its nonlinear features (see (44)). 

Finally, the pressure on the hull surface at the stem is compared with measured values at Fr = 0.16 
in Figure 22. Also in this case, the numerical prediction is satisfactory. 

The same observations and comments, made in the case of the HSVA tanker with regard to the 
prediction of the velocity field, hold also in this case (see Figure 23): in fact, the prediction is good up 
to 90% of the ship length, while near the stem the strong longitudinal vortices observed in the towing 
tank test are much weaker in the numerical solution. 

x = 0.700 x = 0.900 

x = 0.981 x = 1.050 

Figure 23. Cross flow velocity vectors: comparison between numerical results (right) and experimental dataz5 (left) for the S60 
hull Fr=0.160 at cross sections x = 0 . 7 ,  0.9, 0.981, 1.05 
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6. CONCLUDING REMARKS 

The numerical solution of a domain decomposition model for free surface steady viscous flows has 
been obtained; preliminary results are rather encouraging. The coupling algorithm between the viscous 
and the potential solvers is implemented by a robust iterative scheme. The CPU saving with respect to 
a full Navier-Stokes code is apparent and promising. Further numerical experiments are needed to 
analyse the behaviour of the algorithm with more complex ship geometries and the influence of other 
turbulence models on the prediction of the velocity field in the stem region. 
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